

2023 PRODUCT INTRODUCTION

FLOW TOTALZER

Contents

1.	Overview 3
2,	Technical index 4
3,	Wiring diagram 5 5
4、	Structure 5
5,	Display function 5
6,	Instrument programming method 7 8
7、	Programming example 1521
8,	Communication function 16
9、	Instrument accuracy verification 16 23
10,	Instrument calculation model 1623
11,	Communication protocol 18
12,	Pre sales and after sales service 1827

I.Summary

Mc51-y2 intelligent flow totalizer is a general-purpose Flow Totalizer with 16 bit ultra-low power MCU as the core and intelligent Chinese menu configuration. It can complete the flow calculation function of steam, gas and liquid with the fastest calculation speed, lower power consumption and more reliable working performance. It can compensate the temperature and pressure of fluid in real time and online, and receive flow, temperature, pressure and other signals at the same time, The signal can be of frequency, current, differential pressure, resistance and other types. The signal processing adopts the technology of no switch contact and no potentiometer adjustable parts, which makes the measurement more accurate and reliable.

The watchdog technology is adopted in the instrument, which can effectively prevent the phenomenon of crash and non operation in industrial occasions.

With the new flash technology, the instrument data can be stored for more than 10 years after power failure.

Modbus communication technology with rs232/485 interface can be used to network with various networks or industrial buses to realize remote meter reading.

II.Technical indicators

1. Flow input signal:

Frequency signal: such as vortex street, turbine, etc;

 $4 \sim 20$ mA current signal: such as electromagnetic, ultrasonic, etc; Differential pressure signal: such as orifice plate, V-cone, etc.

Note: (1) standard of frequency signal: voltage pulse, V low ≤ 1 V, v high ≥ 5 V, receiving

frequency range: $0 \sim 5000$ Hz;

(2) The receiving type of differential pressure signal is $4 \sim 20$ mA current, and the differential pressure signal without square root.

2. Pressure input signal:

4 \sim 20mA current signal.

Note: steam pressure compensation range: saturated steam 0 \sim 2.0MPa;

Superheated steam: $0 \sim 4.5$ MPa (usually $0 \sim 3.0$ MPa).

3. Temperature input signal:

PT100 platinum resistance, 4 \sim 20mA current output temperature transmitter signal. Note: steam range: 0 \sim 600 degrees (usually 0 \sim 400 degrees).

4. Measurement accuracy: grade 0.5

5. Communication function (to be equipped according to the user's order requirements):rs232 or 485 interface, MODBUS protocol.

6. Display function:

Instantaneous, cumulative, pressure, temperature, frequency, current, differential pressure, density, power failure, record, date, time, last power failure time.

7. Automatic diagnosis function:

During steam measurement, the temperature and pressure compensation is automatically judged. When the on-site temperature is lower than the saturated steam temperature corresponding to the pressure, the compensation is carried out according to the saturated steam working mode; Otherwise, it is compensated according to superheated steam.

8. Small signal removal function:

In the environment of slight vibration or interference, the interference signal can be cut off, which improves the measurement stability of the instrument.

9. Power failure protection function:

The calculation results in the machine and the data set by the user will not be lost in case of power failure, and the storage time is more than 10 years.

10. Working power supply: ac: $220v \pm 15\%$; Power consumption: less than 5W

 $Dc{:}12v\pm5\%$

11. Output power supply: there are two groups in total, one group is 12v/30ma, and the

other group is 24v/200ma.

12. Working environment: temperature: -10 \sim 60 °C; Humidity: 5 \sim 85% RH

- 13. Installation method: Horizontal
- 14. Opening size: $152 \pm 0.5 \times 76 \pm 0.5$ (width × Height in mm)
- 15. Overall dimension: $160 \times \text{eighty} \times 120$ (width \times high \times Depth in mm)

III.Wiring diagram

涡	街传感	器							£1	5 cb 70	
) 压	力变送	器		Ŧ	1 电阻	
12V+	F	12V-	24V	24V	24V	Н	Р	Т	PT0	PT-	PT+
频	颖率输 、	λ				差压	压力	温度		L	
AC2	20V			DC12\	/输入	4-20m	A输出			通讯	接口
L	Ν	FG	NC	12V+	12V-	A0-	A0+	GND	GND	T/A	R/B

Feed output Description: all 12V and GND are the same set of power output, and 24V and GND are the same set of power output.

IV. Structure

Standard snap in type.

V.Display function

1. Instrument

Panel Description:

Label	name	content				
1	Selection key	Parameter setting selection key				
		Enter instrument parameter setting				
2	OK key	Can confirm the changed set value				
		Used to enter the current fixed item when changing the setting				
3	Shift key	Used to move the setting cursor position when changing				
		setting				
		Used to increase the value when changing the number				
4	add keys	Used to select the content of the current setting item when				
		changing the setting				
5	Return key	Used to exit the current setting item when changing the setting				
6		It is used for calling display screen when working condition is				
	Page key	displayed				

		Used to change the current setting when changing the setting
7	display screen	Display real-time measured value (fixed display or patrol display)
	anspia, serven	In the parameter setting state, the setting parameters are displayed

Working condition display interface:

Press the "page turning" key to turn the page to display the required content. Each display screen can be summoned and displayed at any time through the panel keyboard, and can also be programmed to automatically cycle or freeze frame display. The working condition display screens are as follows:

流量	8.24 t/h	频率	232.84Hz
压力	0.852 MPa	电流	0. 000mA
温度	230. 2°C	差压	0. 000kPa
累积	567.8 t	密度	4.271kg/m

Picture one picture two

Current flow: 8.24 t/h current frequency: 232.84hz

Current pressure: 0.852 MPa current current: 0.000ma

Current temperature: 230.2 °C current differential pressure: 0.000kpa

Current accumulation: 567.8t current density: 4.271kg/m³

↓10-05-08	10:21
↑ 10-05-08	10:32
Σ 12=	=023 : 15
10-05-09	14:23

Last power failure time: 10:21, May 8, 2010

Last power on time: 10:32, May 8, 2010

Total times and time of power failure: 12 times, 23 hours and 15 minutes

System real time date and time: 14:23, May 9, 2010

VI. Instrument programming method

As this instrument is a multi-functional programmable intelligent instrument, the user must program and operate the instrument to determine which flow sensor is used and the type of sensor output signal, etc. before access and use; Determine the measuring range, flow range, instrument coefficient, etc. of each measuring sensor.

1. User programming

In the working condition display interface, press the "OK" key to enter the programming. The programming is completed by the Chinese prompt. First, enter the programming password, which is 2917 (Figure 1); Press the "shift" and "increase" keys to input numbers.

After the password is correct, press the "OK" key to enter the main menu (Figure 2).

编程次数	0012
输入密码	0000

流量	压力	温度
补偿	通信	显示
系统	清零	校验

On the main menu display page, use the "select" key to select "flow", then press the "OK" key to enter the "flow setting" submenu (Figure 3), press the "return" key to exit the current item, return to the previous menu, and press the "page turning" key to enter the next submenu.

Figure 1 Figure 2

Figure 3 Figure 3-1

2. Flow setting

The "fluid medium" setting can be selected from steam / gas / liquid, press the "add" key to select, and press the "OK" key to save.

Flow signal" setting can be selected from frequency / current / differential pressure, press "increase" key to select, and press "OK" key to save (Figure 3-1).

UOM" can be set in kg, t, M³, Select from L, when kg and T are selected, measure the mass flow, and select M³, When I, measure the volume flow, press the "increase" key to select, and press the "OK" key to save (Fig. 3-2).

Instrument coefficient" setting, frequency signal is 2 decimal places, differential pressure signal is 3 decimal places, press "shift" key to select data bits, press "increase" key to input numbers, and press "OK" key to save (Figure 3-3).

Flow range" setting is required when connecting current signal. Press the "shift" key to select data bits, press the "increase" key to input numbers, and press the "OK" key to save

(Fig. 3-4).

Differential pressure range" setting is required when connecting to differential pressure signal. Press the "shift" key to select data bits, press the "increase" key to enter numbers, and press the "OK" key to save (Fig. 3-5).

Figure 3-6 figure 3-7

Damping coefficient" setting refers to the time of software digital smoothing filtering. The coefficient is selected between 0 and 9. Our factory setting is 3. Press the "add" key to enter the number, and press the "OK" key to save (Figure 3-6).

Cut off frequency" setting, small flow cut-off signal, press the "shift" key to select data bits, press the "increase" key to input numbers, and press the "OK" key to save (Figure 3-7).

Figure 3-8

Output range" setting, press the "shift" key to select data bits, press the "increase" key to input numbers, and press the "OK" key to save (Figure 3-8).

3. Pressure setting

Use the "select" key to select "pressure" on the main menu display page, and then press the "OK" key to enter the "pressure setting" submenu (Figure 4). Press the "back" key to exit the current item, return to the previous menu, and press the "page turning" key to enter the next menu.

Pressure signal" setting, press the "increase" key to select "current" or "setting", and

Pressure range" setting: input the range value when the pressure signal selects current, press the "shift" key to select data bits, press the "increase" key to enter numbers, and press the "OK" key to save (Figure 4-1).

Damping coefficient" setting refers to the time of digital smoothing filtering. The coefficient is selected between 0-9. Our factory setting is 3. Press the "add" key to input the number, and press the "OK" key to save (Figure 4-2).

Figure 4-2 Figure 4-3

Set pressure" setting, pressure signal selection timing setting, press the "shift" key to select data bits, press the "increase" key to input numbers, and press the "OK" key to save (Figure 4-3).

4. Temperature setting

On the main menu display page, use the "select" key to select "temperature", and then

press the "OK" key to enter the "temperature setting" submenu (Figure 5). Press the "return" key to exit the current item, return to the previous menu, and press the "page turning" key to enter the next menu.

The "temperature signal" setting can be selected between resistance / current / setting, press the "increase" key to select, and press the "OK" key to save.

Temperature range" setting: input the range value when selecting the current signal for the temperature signal, press the "shift" key to select the data bit, press the "increase" key to input the number, and press the "OK" key to save (Figure 5-1).

The setting of "damping coefficient" refers to the time of software digital smoothing filtering. The coefficient is selected between 0-9, and the factory setting is 3. Press the "add" key to input the number, and press the "OK" key to save (Figure 5-2).

Set the temperature" setting, select the timing setting for the temperature signal, press the "shift" key to select data bits, press the "increase" key to input numbers, and press the "OK" key to save (Figure 5-3).

5. Compensation settings

On the main menu display page, use the "select" key to select "compensation", and then press the "OK" key to enter the "compensation setting" submenu (Figure 6). Press the "return" key to exit the current item, return to the previous menu, and press the "page turning" key to enter the next menu.

The "compensation mode" setting can be selected from the temperature and pressure automatic / pressure compensation / temperature compensation / set density, press the "increase" key to select, and press the "OK" key to save.

Figure 6 figure 6-1

Set density" setting, compensation mode or when setting density, press "shift" key to select data bits, press "increase" key to enter numbers, and press "OK" key to save (Fig. 6-1).

6. Communication settings

On the main menu display page, use the "select" key to select "communication", then press the "OK" key to enter the "communication settings" submenu (Figure 7), press the "back" key to exit the current item, return to the previous menu, and press the "page turning" key to enter the next menu.

Communication address" setting refers to the communication address of the instrument. Press the "shift" key to select data bits, press the "increase" key to input numbers, and press the "OK" key to save.

Baud rate" setting can be selected between 9600/4800/2400/1200, press "add" key to select, and press "OK" key to save (Figure 7-1).

7. Display settings

On the main menu display page, use the "select" key to select "display", and then press the "OK" key to enter the "display settings" submenu (Figure 8). Press the "back" key to exit the current item, return to the previous menu, and press the "page turning" key to enter the next menu.

The "display mode" setting can be selected between fixed display and cyclic display. Fixed display refers to the fixed display of the instrument working condition interface, and cyclic display refers to the cyclic display of the three working condition display interfaces. Press the "add" key to select, and press the "OK" key to save.

Backlight time" setting refers to controlling the backlight time of LCD screen, pressing the "shift" key to select data bits, pressing the "increase" key to enter numbers, and pressing the "OK" key to save (Figure 8-1).

Figure 8 figure 8-1

8. System settings

On the main menu display page, use the "select" key to select "system", then press the "OK" key to enter the "system setting" submenu (Figure 9), press the "back" key to exit the current item, return to the previous menu, and press the "page turning" key to enter the next menu.

Set the "system date" in the format of 13-06-18, set according to the actual date, press the "shift" key to select data bits, press the "add" key to select, and press the "OK" key to save.

Figure 9 figure 9-1

Set time" is set in the format of 07:57:00, set according to the actual time, press the "shift" key to select data bits, press the "increase" key to select, and press the "OK" key to save (Figure 9-1).

Programming password" setting, the initial password is 2917, press the "shift" key to select data bits, press the "increase" key to input numbers, and press the "OK" key to save (Figure 9-2).

9. Reset setting

On the main menu display page, use the "select" key to select "reset", then press the "OK" key to enter the "reset setting" submenu, press the "return" key to exit the current item, return to the previous menu, and press the "page turning" key to enter the next menu.

Cumulative reset" is set. The password is 1688. Press the "shift" key to select data bits, press the "increase" key to input numbers, and then press the "OK" key to reset the cumulative quantity (10-1, 10-2).

Power failure reset" setting, password is 2688, press the "shift" key to select data bits, press the "increase" key to input numbers, and press the "OK" key after the input is correct, the total power failure times and time will be reset (Fig. 10-3, 10-4).

Figure 10-3 figure 10-4

Programming reset" setting, password is 3688, press the "shift" key to select data bits, press the "increase" key to input numbers, after input is correct, press the "OK" key, the programming times will be reset (Fig. 10-4, 10-5).

WEIFANG AOBO INSTRUMENT TECHNOLOGY DEVELOPMENT CO., LTD

Figure 10-5 figure 10-6

Note: the calibration settings have been debugged before leaving the factory. Non professionals are not allowed to operate them. They need to return to the factory for calibration!

Menu setting table

Set item	Project content	Settable value	Function and significance	Remarks
		steam		
	Fluid	Gas		
	medium	liquid		
		C C	Frequency input, such as vortex	
	Flow signal	frequency	flowmeter	
		current	Flow is proportional to input	
			current, such as electromagnetic	
flow			flowmeter	
		differential	The flow is square with the	
			input current, such as orifice	
		pressure	plate	
		Kg		The default mass
	Unit of	Т		measurement unit is kg
	measureme	M ³		and the volume
	nt	L		measurement unit is m ³

Table 1

	Instrument factor	000000.00		2 decimal places for frequency signal and 3 decimal places for differential pressure signal
	Flow range	00000000 (M ³)	Flow range corresponding to analog current input	Setting is required when connecting current signal
	Differential pressure range	000.000	Differential pressure range kPa	Need to be set when connecting differential pressure signal
	Damping coefficient	1~9	Time of software digital smoothing filtering	Ex works 3
	Cut signal	00.00	When the flow signal is current, the cut-off signal is current	
	Output range	000000000	Flow range of analog current output	
	Pressure	current	Analog current input (4~20ma)	
	signal	setting	Set pressure	
pressure	Pressure range	00.00	Set pressure range	1.6Mpa set 1.6 value
	Damping coefficient	1~9	Time of software digital smoothing filtering	Ex works 3
	Set	00.00	Set pressure value	Used when selecting pressure setting

		resistance	Platinum resistance input	
	Temperatur		Standard current input of	
	e signal	current	temperature transmitter	
		setting	setting temperature	
temperatu	Temperatur e range	000	Set temperature range	
re	Damping coefficient	1~9	Time of software digital smoothing filtering	Ex works 3
	setting temperatur e	000	Set temperature value	Used when selecting temperature setting
compensa te	Compensat ion mode	Temperature and pressure automatic Pressure compensation temperature compensation Set density		
	Set density	000.000		
communi	Mailing address	000	Set the instrument communication address	
cation		1200	Select to set the baud rate of the	
	Baud rate	2400	instrument (BPS)	

		4800		
		9600		
	Display	Fixed display	Fixed display of a working condition interface	
display	mode	Xun Xian	Three interface cyclic display of working condition display	
	backlight time	00	Control LCD backlight on time	
	Set date	10-06-24	system date	
	Set time	09:12:24	system time	
system	Programmi			
	ng	2917	Change programming password	
	password			
	Cumulative reset	1688	Enter this password and press the "OK" key to clear the accumulated quantity	
Clear	Power failure clearing	2688	Enter this password and press the "OK" key to clear the total number and time of power failure	
	Programmi ng reset	3688	Enter this password and press "OK" to reset the editing times	
check				Note: the calibration settings have been debugged before

		leaving the factory, and
		non professionals are
		not allowed to operate
		them

VII. Programming examples

Example 1:

Measured medium: superheated steam

Supporting instrument: pulse output vortex sensor DN100

The instrument coefficient is 1198.6, and the lower cut-off frequency is 5Hz.

Pressure transmitter range (0 \sim 1.6Mpa), output current (4 \sim 20mA), PT100 platinum resistance.

Secondary instrument analog output: (4 \sim 20) MA corresponding to upper limit flow

7500kg/h

The parameters are set as follows:

Set item	Project content	Settable value
	Fluid medium	steam
	Flow signal	frequency
	Unit of measurement	Kg
flow	Instrument factor	1138.6
	Cut signal	05
	Output range	7500

	Pressure signal	current
pressure	Pressure range	1.6
temperature	Temperature signal	resistance
compensate	Compensation mode	Temperature and pressure automatic

Example 2:

Measured medium: compressed carbon dioxide gas

Supporting instruments: pulse output vortex street sensor DN80, instrument coefficient

2248.5, lower cut-off frequency 7Hz.

Pressure transmitter range (0 \sim 2.5) MPa, output current (4 \sim 20) MA

Temperature transmitter range (0 \sim 100) °C, output current (4 \sim 20) MA

Tip: CO2 density 1.829kg/m³

Set item Project content		Settable value
	Fluid medium	Gas
	Flow signal	frequency
flow	Unit of measurement	Kg
	Instrument factor	2348.5
	Cut signal	07
	Pressure signal	current
pressure	Pressure range	2.5
	Temperature signal	current
temperature	Temperature range	100
compensate	Compensation mode	Set density

According to the above conditions, set the parameters as follows:

Set delisity 1.829

VIII. Communication function

This instrument has standard Modbus protocol, RS485 or RS232 communication interface, and can carry out data communication. It can be directly transmitted by GPRS wireless transmission or used for bus mode transmission. When using bus mode system, each instrument must be set with a different instrument number and select the appropriate baud rate. The instrument number and baud rate are set in the communication setting menu.

IX. Instrument accuracy verification

1. The frequency measurement of this instrument does not need adjustment, but is determined by the instrument crystal oscillator.

2. Analog quantity adjustment adopts full range and zero point of electric adjustment, which is convenient and fast. According to the prompts in the calibration menu, the calibration of instrument analog quantity can be completed.

Note: the company can also provide a complete set of equipment including UPS power supply and rechargeable battery, which are installed in a box together with the totalizer.

X. Instrument calculation model

1. Frequency sensor

$$Q = 3600 \times \frac{F \cdot d}{k}$$

2. Equipped with current type sensor

$$Q = \frac{(I-4)}{16} \times Q_{max} \cdot d$$

- 3. Equipped with differential pressure sensor
- 3.1 mass flow

$$Q = U \sqrt{\Delta P \times d}$$

3.2 volume flow

$$Q = U \sqrt{\Delta P \div d}$$

4. Calculation of differential pressure value

$$\Delta P = \frac{(I-4)}{16} \times \Delta P_{max}$$

- 5. Calculation of density
- 5.1 steam density: automatic temperature and pressure compensation
- 5.2 gas density:

Standard

Standard condition mass density = standard condition bulk density \times Set density

Where:

- F: Sensor output frequency, unit: Hz
- Q: Instantaneous mass flow

D: Medium density, unit: kg/m³

1: Actual current in Ma

K: Instrument factor, n/m³

U: Orifice coefficient

Qmax: maximum value of instrument setting, unit: M ³/ H

 \triangle P: differential pressure value, unit: kPa

XI.Communication protocol

The instrument adopts Modbus communication protocol, and the instrument acts as a slave device to respond to the query command of the master device.

1. Instrument communication features

1. Byte bit format: 1-bit start bit, 8-bit data bit, 1-bit stop bit, no check bit;

2. Baud rate: 1200 \sim 9600, programmable;

3. Instrument address: 0 \sim 255, programmable, transmission in the communication line is 0x00 \sim oxff.

2. Format of query command initiated by master device

From the device address (HEX) + 0x03+ register high address (HEX) + register low address (HEX) + number of registers high byte (HEX) + number of registers low byte (HEX) + LRC, for example: query the 4-byte data starting from the 00 register of instrument 10, and the main device sends the command format:

0x0a, 0x03, 0x03, 0x00, 0x00, 0x00, 0x04, 0x11 (the command is sent in consecutive bytes without an intermediate ",").

3. The data format returned by the instrument after responding to the query command of the master device

Meter address (HEX) + 0x03+ register high address (HEX) + register low address (HEX) + number of registers high byte (HEX) + number of registers low byte (HEX) + data packet of the meter +lrc, for example, table 10 returns after responding to master device commands 0x0a, 0x03, 0x00, 0x00, 0x00, 0x04, 0x11:

0x0a, 0x03,0x00,0x00,0x00,0x04,0x00,0x00,0x23,0x52,0x86 (data is sent in consecutive bytes, without intermediate ",").

Register	Data content	Number	data type	decimal
0x00~0x03	Instantaneous	4 bytes	Long	2 decima
0x04~0x07	pressure	4 bytes	Long	3 decima
0x08~0x09	temperature	2 bytes	Int	1 decima
0x0a~0x0d	Cumulative	4 bytes	Long	1 decima
Oxoe~oxof	frequency	2 bytes	Int	1 decima
0x10~0x11	current	2 bytes	Int	3 decima
0x12~0x15	differential	4 bytes	Long	3 decima
0x16~0x19	density	4 bytes	Long	3 decima

4. Register content definition

If the address of the read register is out of the range, the instrument will return error

information or unpredictable error data.

XII. Pre sales and after sales service

- 1. Provide free technical consultation and help users select models,
- 2. Guide the installation and commissioning. The warranty period is one year. During the warranty period, the "Three Guarantees" are implemented, and one free return to Guangzhou for repair and verification can be carried out. Life long service beyond the warranty period can be provided.

Ordering	Ма	iling			telephone	
unit	add	lress			Zip code	
User	Ma	uiling			telephone	
	add	lress			Zip code	
Pipeline	Outer diameter x wall thickness = Media name $density = kg/m^3$					
condition	XMM					0
Media	Gaseous □ liquid □ saturated steam □ superheated steam □					
Flow range	Minimum () maximum () common () t/h □ m3/h □ standard operating conditions □ •					
Liquid pressure	Minimum () maximum () common () MPa gauge pressure absolute pressure bit					
Fluid	Minimum () maximum () common () °C Installation position high					
temperature	temperature \Box wet \Box explosive \Box				ve 🗆	
Installation	Indoor installation outdoor installation overhead installation underground					

Attachment: vortex flow sensor ordering consultation table

position	installation \Box •				
Selected mo	Selected model: mc51- () intelligent flow totalizer quantity () sets				
Supporting	Supporting instruments:				
Lugb- () number of vortex flow sensors () sets					
Yby type diffused silicon pressure transmitter () set, PH100 thermal resistance () piece					
Other	requirements:				
Notes:					
1. Please	fill in this form carefully and tick $\sqrt{\text{ in } \square}$.				
2. This fo	orm is in duplicate. Please fill in and seal	User completed by:			
it and send	it back to our company together with the	Date:			
contract (pl	ease keep one copy).	Supplier reviewer:			
3. This fo	orm can be copied.	Date:			